Методические рекомендации к изучению теоретического материала темы «Арифметическая и геометрическая прогрессии»

Педагогика как наука » Совершенствование методики преподавания темы "Арифметическая и геометрическая прогрессии" с позиции активизации познавательной деятельности учащихся » Методические рекомендации к изучению теоретического материала темы «Арифметическая и геометрическая прогрессии»

Страница 1

Учение о прогрессиях является существенной, хотя и несколько изолированной от остальных разделов, частью курса алгебры.

Знакомство учащихся с прогрессиями происходит в курсе алгебры девятого класса в теме «Арифметическая и геометрическая прогрессии». На эту тему по программе общеобразовательных классов отводится 14 часов. Для изучения арифметической прогрессии отводится 6 часов, геометрической – 7 часов, но соотношение часов может варьироваться по усмотрению учителя.

Основная цель этой темы – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

Для сильного, думающего, увлеченного математикой класса, обучающегося в обычной школе, можно провести изучение арифметической

и геометрической прогрессий параллельно, основываясь на примерном тематическом планировании, предложенном в §2.

На первом уроке темы необходимо разъяснить смысл понятий последовательность, п-й член последовательности, выработать умение использовать индексные обозначения.

Для более сильных учащихся можно ввести строгое определение последовательности как функции натурального аргумента, понятие области определения и области значений такой функции, графическое изображение последовательности. На этом же уроке уместно показать различные способы задания последовательности, используя задания типа №329,334,336,337 учебника «Алгебра, 9» Макарычева Ю.Н., Миндюк Н.Г. и др. под редакцией Теляковского С.А.

№329. Выпишите несколько первых членов последовательности натуральных чисел, кратных 3. Укажите ее первый, пятый, десятый, сотый и п-й члены.

Решение. Формула общего члена данной последовательности имеет вид: , где п – натуральные числа. Значит, , , , а п-й член указан ранее.

Ответ: 3, 15, 30, .

№334 (а). Найдите первые шесть членов последовательности, заданной формулой п-го члена: .

Решение. Согласно заданной формуле получаем: , , , , , .

Ответ: 1, 3, 5, 7, 9, 11.

№336 (а). Вычислите второй, третий, четвертый и пятый члены последовательности , если известно, что первый член равен 10, а каждый следующий на 3 больше предыдущего, т.е. и .

Решение. Учитывая данные условия, получаем: , , , .

Ответ: 13, 16, 19, 22.

№337 (а). Выпишите первые пять членов последовательности , если , .

Решение. Используя заданные условия, получаем: , , , . Значит, первые пять членов заданной последовательности имеют вид: 1, 2, 3, 4, 5.

Ответ: 1, 2, 3, 4, 5.

Сведения, полученные учащимися на первом уроке темы, используются при введении понятия арифметическая и геометрическая прогрессия, выводе формул п-го члена и суммы п членов для каждой из прогрессий.

Прогрессии (арифметическая и геометрическая) являются простейшими примерами последовательностей, заданных рекуррентным способом. На это обстоятельство сразу следует обратить внимание учащихся и использовать его, формулируя определение прогрессий.

Так, арифметическая прогрессия задается рекуррентным соотношением .

Если последовательность вводится рекуррентным способом, то, как известно, для полного ее задания нужно указать начальные члены; в частности, для арифметической прогрессии нужно задать первый ее член. Итак, арифметическая прогрессия будет определена полностью, если заданы ее первый член и разность. Арифметическая прогрессия с первым членом и разностью d определяется индуктивно условиями: и .

Страницы: 1 2 3 4


Другие статьи:

Анализ программ по подготовке старшеклассников к семейной жизни
Анализ программы «Маленькая мама» позволяет выделить ряд противоречивых и спорных моментов. Среди авторов программ преимущественно педагоги, врачи, реже - психологи и методисты. Социологи, демографы, специалисты по социальной работе и специалисты по планированию семьи в разработке программы не принимали учас ...

Развивающее обучение и его особенности в обучении русскому языку
В современной педагогике утвердилось мнение о том, что основой развивающего обучения служит его содержание, от которого производны методы (или способы) организации обучения. Это положение характерно для воззрений Л. С. Выготского и Д. Б. Эьлконина. "Для нас, - пишет Д. Б. Эльконин, - основополагающее зн ...

Главные разделы

Copyright © 2019 - All Rights Reserved - www.steppedagogy.ru