Применение микрокалькуляторов в начальных классах

Педагогика как наука » Применение микрокалькуляторов в начальных классах

Страница 3

Программируемые микрокалькуляторы позволяют в комплексе использовать различные методы поиска решений задач.

Особо следует отметить роль калькуляторов при решении уравнений. Их систематическое применение при работе над уравнениями коренным образом изменяет ее обучающее содержание. Вообще серьезный политехнический подход к решению уравнений в школе практически можно реализовать только с помощью микрокалькулятора. Он позволяет не только упростить и ускорить вычислительную работу, получить корни уравнений достаточно высокой точности, но и сформировать у учащихся навыки составления таблиц функций с определенной целью, навыки поиска, обнаружения и доказательства свойств уравнений путем анализа этих таблиц. С помощью микрокалькулятора можно находить точные (с точки зрения элементарной математики) целые корни уравнений и в большинстве случаев рациональные корни и корни, выражения радикалами (имеются в виду уравнения, содержащие в современных школьных учебниках и в различных сборниках конкурсных задач). Главное, калькулятор дает возможность применять при решении самых различных уравнений общий функциональный метод, основанный на систематическом комплексном использовании свойств всех функций, изучаемых в школе. При таком подходе к работе над уравнениями у учащихся формируется не только общий метод их решения, но и происходит систематическое комплексное повторение важнейших свойств изученных ранее функций. Последнее является самым существенным в методике обучения учащихся решению уравнений.

С использованием микрокалькулятора делается практически универсальным и самым простым в применении метод интервалов решения неравенств.

В средней школе ученики изучают общие свойства непрерывных функций, применение которых в полном объеме позволяет существенным образом упростить поиск решений нестандартных уравнений. В самом деле, девятиклассник знакомиться с достаточным условием монотонности функций, с правилами вычисления производных, с производной сложной функции. Отсюда непосредственно вытекают свойства суммы двух возрастающих (не убывающих) функций, произведение двух положительных возрастающих (убывающих) функций. Однако при решении уравнений и других задач прикладного характера эти важнейших теоретические знания применения не находят и поэтому учениками усваиваются формально. Например, ученик, не прирученный смотреть на уравнение с функциональной точки зрения, уравнения не решает, даже если он знает все названия выше свойства производной на «отлично».

Единственный подход к этой задаче выглядит следующим образом. Левая часть уравнения определена на [750/259; +∞]. На этом промежутке непрерывные неотрицательные функции y=777x-2500 и y=77x3+108 возрастающие. Функции и возрастающие. Поэтому и сложные функции и

Возрастающие. Функция F(x)=P(x)+K(x) непрерывная и возрастающая. Поэтому данное уравнение имеет не более одного корня x0. При помощи микрокалькулятора легко находим x0=3.

У учащихся постоянно формироваться культура работы над уравнениями, которая сводиться к следующему. Приступая к решению уравнения F(x)=0, прежде всего необходимо попытаться выяснить, имеет ли оно корни. В необходимых случаях (для получения гипотезы о существовании корней) составляем таблицу функции F(x)=0 при помощи калькулятора. Дело в том, что доказать, что уравнение F(x)=0 не имеет корней, часто гораздо проще, чем заниматься его преобразованиями, направленными на получении точных корней. Полученная таблица функции F(x) облегчает и выбор методов нахождения корней F(x), на которые без таблицы мы могли бы и не обратить внимание.

Следует заметить, что определение корней уравнения F’(x)=0 может оказаться более сложной задачей, чем решение уравнения F(x)=0. Поэтому часто приходиться отказываться от мысли отделить корни уравнения F(x)=0 путем нахождения критических точек функции F(x)=0. Во многих случаях отделение корней упрощается с помощью «ступенек». Для этого уравнения F(x)=0 преобразовывается к виду P(x)=M(x) (P(x) и M(x) –возрастающие или убывающие функции на некотором промежутке). При помощи калькулятора составляются таблицы функций P(x) и M(x), P’(x) и M’(x) (с достаточно малым шагом). Работа над уравнением завершается уточнением отдельных корней.

Страницы: 1 2 3 4


Другие статьи:

Современное состояние структуры образования
Один из способов достижения эффективности образования - оптимизация его структуры. В ближайшее время на уровень регионов будут переданы 50% всех ПТУ (2,5 тысячи), столько же останется на федеральном уровне. Чтобы ПТУ и техникумы не остались в 2005 году без денег, их руководители уже сейчас должны заниматься ...

Анализ результатов опытно - эмпирического исследования по социальной адаптации детей младшего школьного возраста разведенных родителей
В ходе выполнения нашего исследования, для определения уровня социальной адаптации детей младшего школьного возраста разведенных родителей была проведена работа на базе школы № 22 г. Абакана с учащимися 4 класса, в количестве - 17 человек. Была проведена диагностика на выявление межличностных отношений в кла ...

Главные разделы

Copyright © 2020 - All Rights Reserved - www.steppedagogy.ru