Методические рекомендации к урокам решения задач по теме «Арифметическая и геометрическая прогрессии»

Страница 5

3. Задачи с практическим и экономическим содержанием на прогрессии.

Рассмотрим несколько примеров решения таких задач.

Задача 1. В сберегательный банк внесли вклад в 10000 руб. с доходом 2% годовых. Какую сумму выплатит сберегательный банк вкладчику через 4 года?

Решение. Сбербанк за один год выплатит , где – вклад, q – процентная ставка. За 2 года , но , следовательно, .

Легко убедиться, что за 3 года , …, за n лет .

По этой формуле определим сумму, которую сбербанк выплатит вкладчику по истечении четырех лет:

.

Ответ: .

Задача 2. Бегун за первую минуту бега пробежал 400 м, а в каждую следующую минуту пробежал на 5 м меньше, чем в предыдущую. Какой путь пробежал он за 1 ч?

Решение. За первую минуту бегун пробежал 400 м, за вторую – 395 м, за третью – 390 м и т. д. Числа 400, 395, 390, … образуют арифметическую прогрессию, у которой , . Путь за 1 ч, т. е. за 60 мин, равен сумме первых шестидесяти членов прогрессии. Увидев формулу , получим: .

Итак, за 1 ч бегун пробежал 15 км 150 м.

Ответ: 15 км 150 м.

Другие примеры задач этого типа предложены в §7 приложении 4.

4.Нестандартные задачи на прогрессии.

Учащиеся затрудняются в решении задач на прогрессии с буквенными данными. Но эти задачи часто встречаются на вступительных экзаменах в вузы. Поэтому школьников следует учить решению таких задач не только на внеклассных занятиях, но и на уроках, что, естественно, способствует активизации деятельности учащихся на уроках–практикумах. Осуществить такое обучение легче всего с помощью целой подборки заданий. Далее предлагается такая подборка.

Задача 1. Найдите сумму членов арифметической прогрессии, если сумма первых членов этой прогрессии равна .

Решение. Преобразуем искомую сумму:

По условию , отсюда .

Ранее мы доказали, что .

Из последних двух равенств следует: .

Ответ: .

Задача 2. В арифметической прогрессии . Найдите отношение к .

Страницы: 1 2 3 4 5 6


Другие статьи:

История возникновения идеи объединения мирового и европейского образования
70-80-е годы являются точкой отсчета структурного и содержательного преобразования высших школ западноевропейских стран. В настоящее время в большинстве этих стран функционирует многоуровневая система подготовки, введена система сопоставимых зачетных единиц (кредитов). Решена проблема взаимного признания ква ...

От многообразия выбора к авторским технологиям
Технологии авторских (инновационных) школ построены на оригинальных (авторских) идеях, которые, как правило, понятны из их названия. Это – школа адаптирующей педагогики (Е. Ямбург, Б. Бройде), школа самоопределения (А. Тубельский), «Русская школа» (И. Гончаров, Л. Погодина), школа-парк (М. Балабан), агрошкол ...

Главные разделы

Copyright © 2019 - All Rights Reserved - www.steppedagogy.ru